
Watch out! Motion is BlurringBlurring the Vision of Your
Deep Neural Networks

Qing Guo1 Felix Juefei-Xu2 Xiaofei Xie1∗ Lei Ma3∗

Jian Wang1 Bing Yu3 Wei Feng4 Yang Liu1

1Nanyang Technological University, Singapore 2Alibaba Group, USA
3Kyushu University, Japan 4Tianjin University, China

Abstract

The state-of-the-art deep neural networks (DNNs) are vulnerable against adversar-
ial examples with additive random-like noise perturbations. While such examples
are hardly found in the physical world, the image blurring effect caused by ob-
ject motion, on the other hand, commonly occurs in practice, making the study
of which greatly important especially for the widely adopted real-time image
processing tasks (e.g., object detection, tracking). In this paper, we initiate the
first step to comprehensively investigate the potential hazards of blur effect for
DNN, caused by object motion. We propose a novel adversarial attack method
that can generate visually natural motion-blurred adversarial examples, named
motion-based adversarial blur attack (ABBA). To this end, we first formulate the
kernel-prediction-based attack where an input image is convolved with kernels in a
pixel-wise way, and the misclassification capability is achieved by tuning the kernel
weights. To generate visually more natural and plausible examples, we further
propose the saliency-regularized adversarial kernel prediction, where the salient
region serves as a moving object, and the predicted kernel is regularized to achieve
naturally visual effects. Besides, the attack is further enhanced by adaptively
tuning the translations of object and background. A comprehensive evaluation on
the NeurIPS’17 adversarial competition dataset demonstrates the effectiveness of
ABBA by considering various kernel sizes, translations, and regions. The in-depth
study further confirms that our method shows more effective penetrating capability
to the state-of-the-art GAN-based deblurring mechanisms compared with other
blurring methods. We release the code to https://github.com/tsingqguo/ABBA.

1 Introduction
Deep neural networks (DNN) have been widely applied in various vision perception tasks (e.g., object
recognition, segmentation, scene understanding), permeating many aspects of our daily life, such as
autonomous driving, robotics, video surveillance, photo taking, etc. However, the state-of-the-art
DNNs are still vulnerable against adversarial examples. Extensive previous works are proposed
(e.g., FGSM[1],BIM [2], MI-FGSM [3], C&W [4]), to mislead the DNN through additive noise
perturbations that could be obtained by optimizing the adversarial objectives. To be imperceptible to
human, Lp-norm plays an important role in such attacks, confining the perturbation noise to be small.
However, the random-noise like perturbation often does not pose imminent threats to the camera
systems, which does not usually occur in natural environment. Thus, some recent attempts [2] were
made to physically fashion adversarial examples such as by putting up stickers or printed patterns
on the physical stop sign, etc. Again, these artifacts are often intentionally prepared for adversarial
attacks, which do not found ‘naturally’ in the real-world environment either.
∗Xiaofei Xie and Lei Ma are corresponding authors (xfxie@ntu.edu.sg, malei@ait.kyushu-u.ac.jp).

ar
X

iv
:2

00
2.

03
50

0v
2

 [
cs

.C
V

]
 2

7
Se

p
20

20

https://github.com/tsingqguo/ABBA
mailto:xfxie@ntu.edu.sg
mailto:malei@ait.kyushu-u.ac.jp

While the blurring effect caused object motion commonly occurs in practical image perception
systems, the potential hazards of motion blur effect to the DNN are largely untouched so far. Motion
blur naturally happens during the exposure time of image capturing. When an object moves at a
relatively high speed, all information of the object during the image capture process is integrated,
constituting a blur-like image along a relative moving direction. Compared with other kinds of image
blur (e.g., defocus blur caused by using unsuitable camera focus), motion blur is directly related to
the motion of object and camera, whose effect cannot be easily removed by adjusting the camera’s
setting. As a result, motion blur almost coexists with the camera and potentially posts serious effects
on DNN perception-based systems. However, up to present, there are limited studies discuss how
motion blur affects the DNN perception tasks. It is not even clear whether and what kinds of motion
blur can systematically mislead a DNN.

Original MIFGSM TIMIFGSM ABBA (ours)

Figure 1: Four adversarial examples of MIFGSM [3], TIM-
IFGSM [5] and our ABBA. MIFGSM and TIMIFGSM pro-
duces apparent noise on all four cases. Our ABBA generates
visually natural motion blur. All adversarial images fool the
Inception-v3 model.

In this paper, we initiate first step to comprehensively
investigate blur effects to DNNs from the adversarial
attack perspective, where systematic motion blur-based
adversarial example discovery would be an important
step towards further DNN enhancement. In particular,
we propose a new type of adversarial attack, termed
motion-based adversarial blur attack (ABBA), which
can generate visually natural and plausible motion-
blurred adversarial examples. We first formulate the
kernel-prediction-based attack where an input image
is convolved with kernels in a pixel-wise way, and the
misclassification ability is guided by systematically ker-
nel weight tuning. In order to generate more natural
motion blurred examples, we also propose the saliency-
regularized adversarial kernel prediction, where the
salient region serves as a moving object, and the pre-
dicted kernel is regularized to achieve visually natural
effects. Besides, our method could easily adjust the blur
effects of differ exposure time during the image captur-
ing in the real world, by adaptively tuning translations
of object and background.

We perform comprehensive evaluation on the effectiveness of the proposed ABBA, benchmarked
against various noise-based attacks on both attack success rates and transferability. The main
contributions of this work can be summarized as follows. ¶ To the best of our knowledge, we make
the very first attempt to investigate kernel-based adversarial attack. · We propose a motion-based
adversarial blur attack as a new type of attack mode, to be added to the adversarial attack family.
¸ In order to produce more visually plausible blur attack, we introduce a saliency regularizer that
forces consistent blur patterns within the boundary of the objects (or background in some cases).
¹ Compared with state-of-the-art (SOTA) additive-noise based adversarial attacks and common
blur techniques, our proposed method achieves better attack success rate and transferability. º
Furthermore, our proposed method has demonstrated higher penetration capability against the SOTA
GAN-based deblur mechanism, compared to normal image motion blur.

Related Work. Since the discovery of adversarial examples to attack a deep neural network (DNN)
both theoretically [1] and physically [2], there has been extensive research towards developing
adversarial attack and defense mechanisms. The basic iterative method (BIM) [2], the C&W method
[4], the fast gradient signed method (FGSM) [1], and the momentum iterative fast gradient sign
method (MI-FGSM) [3], etc., are a few popular ones among early adopters in the research community.
Building upon these ideas, researchers have been continuously pushing the envelope in many ways.
For example, serious attempts have been made to integrate momentum term into the iterative process
for the attacks [3]. By doing so, the momentum can help stabilize the update directions, begetting
more transferable adversarial examples and posing more threats to adversarially trained defense
mechanisms. More recently, [5] proposes to optimize the noise perturbation over an ensemble of
translated images, making the generated adversarial examples more robust against white-box models
being attacked while achieving better transferability. The mainstream adversarial attack is an additive
noise pattern that is learnable given the model parameters under a white-box setting. Perhaps the
prevalence is partially due to the fact that the adversarial noise with the ‘addition’ operation is

2

relatively straightforward to optimize for. Of course, there are many other ways to alter a benign
image beyond the addition operation that are all potential candidates for coming up with new types
of adversarial attack modes. One caveat of additive noise attack is the lack of balance between
being visually plausible and imperceptible while having high attack success rate. Usually, it has
to compromise one for the other. Researchers are looking beyond additive noise attack to seek
novel attack modes that strike a better balance between visual plausibility and performance, e.g.,
multiplicative attack [6], deformation attack [7, 8, 9], and semantic manipulation attack [10].

We are proposing a new type of motion-based adversarial blur attack that can generate visually
natural and plausible motion-blurred adversarial examples, inspired from kernel prediction such as
[11, 12, 13] and motion blur generation [14]. One desired property of the proposed method is the
immunity and robustness against the SOTA deblurring techniques (e.g., [15, 16]). In an effort to
understand black-box DNN better, an image saliency paradigm is proposed [17] to learn where an
algorithm looks at, by discovering which parts of an image most affect output score when perturbed in
terms of Gaussian blur, replacing the region with constant value and injecting noise. The localization
of the blur region is performed through adaptive iteration whilst ours is saliency regularized that leads
to a visually plausible motion-blurred image. The major difference is that their Gaussian blur kernel
is fixed while ours is learnable to maximally jeopardize the image recognition DNNs.

2 Methodology
2.1 Background: Additive-Perturbation-Based Attack
Let Xreal be a real example, e.g., images in the ImageNet dataset, and y denotes its ground truth label.
A classifier denoted as f(X) : X → Y predicts the label of Xreal. An attack method aims to generate
an adversarial example denoted as Xadv that can fool the classifier to predict an incorrect label
with imperceptible perturbation. Existing attack methods mainly focus on the additive adversarial
perturbation that is added to the real example to get Xadv = g(Xreal, δ) = Xreal + δ, where δ is
generated by maximizing a loss function J(Xadv, y) with a constrained term:

arg max
δ

J(Xreal + δ, y) subject to ‖δ‖p ≤ εa, (1)

For example, gradient descent is widely employed by many methods to generate adversarial examples,
e.g., FGSM, BIM, MIFGSM, DIM and TIMIFGSM.

2.2 ABBApixel: Kernel-Prediction-Based Adversarial Attack
Besides ‘+’, there are various techniques that can perform advanced image transformation for different
objectives, e.g., Gaussian filter for image denoising, Laplacian filter for image sharpening, and guided
filter for edge-preserving smooth [18], which are all kernel-based techniques, processing each pixel
of the image with a hand-crafted or guided kernel. In general, compared with the addition, kernel-
based operation can handle more complex image processing tasks via different kinds of kernels.
More recently, several works [19, 12, 13] found that the kernel weights can be carefully predicted
for advanced tasks with high performance, e.g., high quality noise-free rendering and video frame
interpolation. Inspired by these works, in this paper, we propose the kernel-prediction-based attack.
Specifically, we process each pixel (i.e., Xreal

p) of a real example Xreal with a kernel kp,

Xadv
p = g(Xreal

p ,kp,N (p)) =
∑

q∈N (p)

Xreal
q kpq, (2)

where p denotes the pth pixel in Xadv and Xreal, i.e., Xadv
p and Xreal

p , respectively. N (p) is a set of N
pixels in Xreal and p ∈ N (p). The kernel kp also has the size of N and determines the weights of
N pixels in N (p). In general, we have

∑
q∈N (p) kpq = 1 to ensure the generated image lies within

the respective neighborhood of the input image, where a softmax activation is often adopted for this
requirement [19]. To better understand Eq. (2), we discuss with two simple cases: 1) when we let
N (p) be a neighborhood of the pixel p and the kernel of each pixel is a fixed Gaussian kernel, Xadv

is the Gaussian-blurred Xreal. Similarly, we can obtain defocus-blurred image with disk kernels. 2)
when we set max(kp) = kpp and ∀q, kpq 6= 0, the perturbation of Xadv becomes more imperceptible
as length of kp decreases. To achieve high attack success rate, we need to optimize kernels of all
pixels independently, i.e., K = {kp|∀p ∈ Xreal}, according to the loss function of AI-related tasks,
e.g., image classification, and constrained terms

argmax
K

J({
∑

q∈N (p)

Xreal
q kpq}, y) subject to ∀p, ‖kp‖0 ≤ ε,max(kp) = kpp,

∑
q∈N (p)

kpq = 1, (3)

3

Figure 3: Pipeline of our motion-based ad-
versarial blur attack, i.e., Eq. (4). First, We
use the PoolNet [20] to extract the salient
object in the image and obtain the object
and background regions. Then, the transla-
tion parameters θo and θb are divided to
N parts to simulate the motion process and
generate N images with the spatial trans-
former network [21]. Finally, we get the ad-
versarial example by adding these images
with adversarial kernels as weights for each
pixel. The adversarial kernels and transla-
tion parameters are tuned to realize effec-
tive attack by optimizing Eq. (5). � de-
notes the element-wise product.

where ‖kp‖0 represents the number of valid kernel elements (i.e., {kpq 6= 0}) and ε ∈ [1, N]
controls the upper bound of ‖kp‖0. When ε = 1, we have Xadv = Xreal, and when ε = N , the
perturbation would be the most serious case. We can calculate the gradient of the loss function with
respect to all kernels, to realize the gradient-based attack. As a result, the attack method can be
integrated into any gradient-based additive-perturbation attack methods, e.g., FGSM, BIM, MIFGSM.

ABBApixe lorignal ABBA

Figure 2: From left to right: original image, adversarial exam-
ples generated by the kernel-prediction-based attack (ABBApixel),
and motion-based adversarial blur attack (ABBA).

Since the kernel-prediction-based adversarial attack
tunes each pixel’s kernel independently, it can achieve
a significantly high attack success rate, but generating
unnatural images that are easily perceptible. For an
easier reference, we name this method ABBApixel. As
shown in Fig. 2, ABBApixel distorts the original inputs
and produces additive noise-like results. To reach the
balance between high attack success rate and natural
visual effect, we propose to regularize the kernels to
produce visually natural motion blur via the guidance of a visual saliency map.

2.3 ABBA: Motion-Based Adversarial Blur Attack

Motion blur is a frequently occurring effect during image capture. We first introduce how to generate
visually natural motion-blurred adversarial examples by regularizing the kernel-prediction-based
attack. Then, we describe the workflow of our proposed attack in Fig. 3 for better understanding.

2.3.1 Saliency-Regularized Adversarial Kernel Prediction
Motion blur is often generated during the exposure time by integrating the light from a moving object.
To synthesize the motion blur, we need to know where the object is and specify how it moves. To this
end, given an image, we first use the SOTA saliency detection method, i.e., PoolNet [20], to extract
the salient object S from Xreal and assume it is moving at the time when capturing the image. The
saliency map S is a binary image, indicating the salient object region (i.e., Xreal�S) and background
region (i.e., Xreal � (1− S)), as shown in Fig. 3. Then, we specify translation transformations to the
object and background, respectively. We denote them as T(Xreal �S, θo) and T(Xreal � (1−S), θb)
that are simplified as XS,θo and X1−S,θb , where θo and θb are the translation parameters2 for the
object and background, respectively.

Since motion blur is the integration of all light during the object moving process, we divide the
motion represented by θo and θb into N sub-motions (corresponding to the kernel size N in Eq. (2))
to simulate blur generation. The sub-motions are represented by {i∆θo, |i ∈ [1, N]} and {i∆θb, |i ∈
[1, N]}, where ∆θo = θo/N and ∆θb = θb/N . Then, we redefine Eq. (2) as

Xadv
p = g(Xreal

p ,S,kp,N (p)) =
∑

q=N (p,i),i∈[1,N]

(XS,i∆θo
q +X1−S,i∆θb

q)kpq, (4)

where N (p) is a set of the pth pixel in all translated examples. XS,i∆θo and XS,i∆θo denote the
object and background images translated i∆θo pixels. Compared with the attack in Sec. 2.2, the
perturbation amplitude is affected by the kernel and translation parameters. The objective function is

2
θo and θb are 2D vectors in the range of [0,1] and represent the rates of x-axis and y-axis shifting distance of the object&background regions w.r.t. image size.

4

defined as
arg max
K,θo,θb

J({
∑

q=N (p,i)
i∈ [1,N]

(XS,i∆θo
q + X1−S,i∆θb

q)kpq}, y) (5)

subject to ∀p, ‖kp‖0 ≤ ε,max(kp) = kpp,
∑

q∈N (p)

kpq = 1

∀p, q,kp = kq, if S(p) = S(q), ‖θo‖∞ ≤ εθ, ‖θb‖∞ ≤ εθ.
where εθ ∈ [0, 1] controls the maximum translations of the object/background. Here, we use the
spatial transformer network [21] to perform translation according to θo and θb, enabling the gradient
propagate to all kernels. There are two main differences about the constrained terms c.f . Eq. (3):
(1) The translation parameters are added to guide the generation of the adversarial example; (2) The
kernels are set to be the same within the same region, which is needed to generate visually natural
motion blur, since pixels in the object region usually have the same motion. As shown in Fig. 2, by
incorporating saliency and motion regularization, the ABBA’s adversarial example looks visually
more natural than the one by ABBApixel.

2.3.2 Attacking Algorithm
We summarize the workflow of our attacking algorithm in the following steps: 1) Calculate the
saliency map of an image, i.e., Xreal, via PoolNet and obtain S. 2) Initialize θo,t = θb,t = [0, 0] and
set each kernel kp,t of Kt by {kpp,t = 1, kpq,t = 0|∀q ∈ N (p), q 6= p} where t = 0 denotes the first
iteration. 3) Calculate Xadv

t via Eq. (4), which is also visualized in Fig. 3 for better understanding.
4) Calculate the gradient of Xadv

t with respect to the objective function and obtain∇Xadv
t
J(Xadv

t , y).
5) Propagate the gradient through the spatial transformer network and obtain the gradients of Kt,
θo,t, and θb,t, i.e., ∇KtJ(Xadv

t , y), ∇θo,tJ(Xadv
t , y) and ∇θb,tJ(Xadv

t , y). 6) Update Kt, θo,t, and
θb,t with a step size. 7) Update t = t+ 1 and go to the Step 3) for further optimization until it reaches
the maximum iteration or Xadv

t fools the DNN. We will detail our settings in Sec. 3.1.

2.4 ABBAphysical: Towards Real-World Adversarial Blur Attack
As introduced in Sec. 2.3.2, ABBA takes a real example as the input and produces an adversarial
blur example, the estimated kernels (K∗), and translation parameters (θ∗o and θ∗b). Then, it posts an
interesting problem whether we could use the estimated translation parameters to guide camera or
object moving, in generating a real-world adversarial blur examples. There are three main challenges :
1) We cannot control kernels’ values in the real world. The optimized kernels are to let the adversarial
examples fool deep models and may not exist in the real world. 2) It is difficult to preciously control
the object or camera’s moving without a high-precision robot arm. 3) To transfer the image translation
to camera translation, we need know the object depth and camera intrinsic parameters.

To alleviate these challenges, we conduct the following modifications of our ABBA: 1) we fix the
kernels K to be average kernels (i.e., we set each kernel’s elements as 1

N where N is the kernel size)
that let the generated adversarial blur follow the real-world motion blur3. 2) We force the object
and background to share the translation parameters. As a result, ABBA simulates the blur generation
through camera moving, where object and background have the same motion thus we can produce
blurred examples by moving the camera. 3) In the real world, we could use a RGB-D camera to get
an object’s depth and leverage a calibration software to obtain the intrinsic parameters of the camera.

Based on these, we can generate a real-world adversarial blur example by: 1) capturing a picture
containing an object in a real-world scene. 2) using our ABBA to calculate θ∗o or θ∗b . 3) calculating
the camera translations according to object depth and camera intrinsic parameters. 4) moving camera
according to the camera translations and take a real blur picture during the moving process as the
output. In particular, we will validate ABBAphysical in Sec. 3.4 through the AirSim simulator [24]
within which we can control a simulated camera preciously and obtain the depth map. We also
conduct a experiment with a mobile phone to primarily verify our method in the real world.

3 Experimental Results
In this section, we conduct comprehensive experiments to demonstrate the effectiveness of our
proposed method, by investigating the following five research questions: 1) Is the transferability of
3

We use the average kernels to simulate the real motion blur generation process, which has been used to construct training dataset for deblurring methods [22, 23].

5

our proposed method across models comparable or even better than SOTA attack methods? 2) Could
our method produce visually natural examples? 3) Could we generate adversarial blurred examples
that possibly occur in the real world? 4) As a blurring method, could SOTA deblurring methods
easily defend our attack? 5) How is attacking success rate affected by hyper-parameters, e.g., ε, εθ,
motion direction, and blur region?

3.1 Experimental Settings
Dataset and Models. We use NeurIPS’17 adversarial competition dataset [25], compatible with
ImageNet, for all the experiments. To validate our method’s transferability, we consider four widely
used models, i.e., Inception v3 (Inc-v3) [26], Inception v4 (Inc-v4), Inception ResNet v2 (IncRes-v2)
[27], and Xception [28]. We further compare on four defense models: Inc-v3ens3, Inc-v3ens4, and
IncRes-v2ens from [29] and high-level representation guided denoiser (HGD) [30] with the highest
ranking in NeurIPS’17 defense competition. We report the results of Inc-v3 in the paper, and put
more results of other models (e.g., Inc-v4, IncRes-v2, Xception), in the supplementary material.

Baselines. We consider two kinds of baselines. The first scope is SOTA additive-perturbation-based
attacks, e.g., FGSM [1], MIFGSM [3], DIM [31], TIFGSM, TIMIFGSM, and TIDIM [5]4, and
interpretation-based noise [17]. The second kind contains three blur-based methods including the
interpretation-based blur [4], Gaussian blur [32] and Defocus blur. For the transferability comparison
in Sec. 3.2, we follow default settings in [5] for the first group attacks. For all iterative attack
methods including ours, we set the iteration number to be 10. For blur-based baselines, we set the
standard variation of Gaussian blur and the kernel size of Defocus blur to be 15.0, which is the same
with our method for a fair comparison. For the image quality comparison in Sec. 3.2, we tune the
hyper-parameter of all attacks to cover the Succ. Rate from low to high and show the relationship
between image quality and Succ. Rate. This helps to see if our method could maintain high attack
Succ. Rate and transferability while keeping image natural.

Setup of ABBA. In the experimental part of Sec. 3.2, we implement our methods by setting the hyper-
parameters, i.e., maximum translation εθ to 0.4 and maximum valid kernel size ε to 15.0 with the
iteration 10. The step sizes are set as 0.04 and 1.5 for updating the kernels and translation parameters,
respectively. Such setups are around the medium values among the range of our hyper-parameters,
well balancing the attack success rate and visual quality. We discuss the effect of εθ and ε in Sec. 3.6.
In addition, we have four variants of our method, i.e., ABBApixel, ABBAobj, ABBAbg, and ABBAimage.
The first one is the attack introduced in Sec. 3.6 while the rest three methods blur different regions
of input images, e.g., ABBAobj only adds motion blur to the object region by fixing the kernels of
background pixels to be {kpp = 1, kpq = 0|S(p) = 0, q ∈ N (p), q 6= p} and ABBAimage adds motion
blur to the whole image while forcing object and background to share the kernels and translations.

Metrics. We use the success rate (Succ. Rate), i.e., the rate of adversarial examples that fool attacked
DNNs, to evaluate the effectiveness of attacks. Regarding quality of generated adversarial examples,
we use BRISQUE [33] instead of Lp norms, PSNR, or SSIM due to the following reasons: 1) our
ABBA cannot be fairly evaluated by the L1, L2, L∞, PSNR, or SSIM metrics since the perturbation
is not additive and no longer well aligned pixel-to-pixel. 2) BRISQUE [33] is a natural scene
statistic-based distortion-generic blind/no-reference (NR) image quality assessment and widely used
to evaluate losses of ‘naturalness’ in the image due to the presence of distortions including additive
noise and blur. It should be note a more natural image often has a smaller BRISQUE value.

3.2 Comparison with Baselines on Transferability
Tab. 1 summarize the comparison results. We discuss them from two aspects: 1) the comparison
with additive-perturbation-based attacks. 2) the advantages over blur-based methods. For the first
aspect, compared with all additive-perturbation-based attacks, our methods, i.e., ABBA and ABBApixel,
achieve the highest success rate on all defences models, demonstrating the higher transferability
of ABBA over baselines. Compared with two SOTA methods, i.e., DIM and TIDIM, ABBApixel
achieves slightly lower success rate when attacking Inc-v4 and IncRes-v2 while obtaining higher
results than TIDIM when attacking Xception. In summary, our methods ABBApixel and ABBA have
competitive transferability with SOTA additive-perturbation-based attacks while achieving significant
advantages in attacking defence models. For the second aspect, ABBA achieves higher success rate
than GaussBlur, DefocusBlur, and Interpblur on all normal trained models and defence models. We
also compare them for attacking object or background regions. Obviously, the success rates of all

4
We use the released code in github.com/dongyp13/Translation-Invariant-Attacks to get the results of FGSM, MIFGSM, DIM, TIFGSM, TIMIFGSM, and TIDIM.

6

github.com/dongyp13/Translation-Invariant-Attacks

Attacking Results (Inc-v3) Defence Results (Inc-v3)
Inc-v3 Inc-v4 IncRes-v2 Xception Inc-v3env3 Inc-v3env4 IncRes-v2ens HGD

GaussBlur 34.7 22.7 18.4 26.1 23.6 23.8 19.3 16.9
GaussBlurobj 13.6 6.0 5.2 7.1 8.6 7.8 6.3 4.6
GaussBlurbg 18.8 10.8 9.2 12.0 13.0 13.1 10.9 8.7
DefocBlur 30.0 16.8 11.1 18.8 17.5 18.3 15.0 12.9
DefocBlurobj 10.0 3.0 2.9 3.6 5.2 4.6 3.8 2.7
DefocBlurbg 16.9 9.2 7.0 10.5 10.1 10.3 9.2 7.8
Interpblur 34.7 3.6 0.5 3.4 7.1 7.1 4.3 1.4

ABBAobj 21.0 4.9 4.2 7.0 10.1 10.5 8.3 4.9
ABBAbg 30.9 11.6 10.1 12.9 1.2 0.8 1.2 0.5
ABBAimage 62.4 29.8 28.8 34.1 43.2 43.8 38.9 28.4
ABBApixel 89.2 65.5 65.8 71.2 69.8 72.5 68.0 63.1
ABBA 65.6 31.2 29.7 33.5 46.6 48.7 41.2 31.0

Interpnoise 95.8 20.5 15.6 22.9 16.8 16.1 9.4 3.3
FGSM 79.6 35.9 30.6 42.1 15.6 14.7 7.0 2.1
MIFGSM 97.8 47.1 46.4 47.7 20.5 17.4 9.5 6.9
DIM 98.3 73.8 67.8 71.6 24.2 24.3 13.0 9.7
TIFGSM 75.4 37.3 32.1 38.6 28.2 28.9 22.3 18.4
TIMIFGSM 97.9 52.4 47.9 44.6 35.8 35.1 25.8 25.7
TIDIM 98.5 75.2 69.2 61.3 46.9 47.1 37.4 38.3

Table 1: Adversarial comparison results on NeurIPS’17 ad-
versarial competition dataset according to the success rate.
The adversarial examples are generated from Inc-v3. There
are two comparison groups. For the first one, we compare
blur-based methods, i.e., Interpretation-based blur (Interpblur),
GaussBlur, and DefocusBlur with our ABBA by considering
the effects of attacking different regions, i.e., object or back-
ground regions, of inputs. In addition to above methods,
the second group comparison contains additive-perturbation-
based attacks, i.e., Interpretation-based noise (Interpnoise) [17],
FGSM [1], MIFGSM [3], DIM [31], and TIFGSM, TIM-
IFGSM, and TIDIM [5]. We highlight the top three results
with pink , yellow , and blue , respectively.

methods decrease significantly when we add blur to only object or background regions. Besides these
transferability results, we also add an analysis in the supplementary material about the interpretable
explanation of the high transferability of our method by comparing with FGSM and MIFGSM.

3.3 Comparison with Baselines on Image Quality
We conduct an analysis about the attack success rate and image quality (i.e., measured by BRISQUE
[33] that evaluates losses of ‘naturalness’ in the image). Note that, smaller BRISQUE corresponds to
more natural images. We also consider two comparison groups: 1) the blur-based attacks, i.e., Gauss-
Blur and DefocBlur, and 2) SOTA additive-perturbation-based attacks, i.e., FGSM, MIFGSM, DIM,
TIFGSM, TIMIFGSM, and TIDIM. For each compared method, we tune their hyper-parameters5 to
cover success rates from low to high on the NeurIPS’17 adversarial competition dataset. For each
hyper-parameter, we calculate the average BRISQUE of the adversarial images that successfully
fool DNNs. As a result, for each attacked model, we can draw a plot for an attack method and
the points more near the top left corner are better (i.e., looks more naturally while fooling DNNs).

20 40 60 80 100 120 140 160

BRISQUE

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
.
R
a
t
e

Succ.Rate vs. BRISQUE(Attack Inc-v3)

GaussBlur

DefocBlur

FGSM

MIFGSM

DIM

TIFGSM

TIMIFGSM

TIDIM

ABBA

20 40 60 80 100 120 140 160

BRISQUE

0.0

0.2

0.4

0.6

0.8

S
u
c
c
.
R
a
t
e

Succ.Rate vs. BRISQUE(Transfer to IncRes-v2)

20 40 60 80 100 120 140 160

BRISQUE

0.0

0.2

0.4

0.6

0.8

S
u
c
c
.
R
a
t
e

Succ.Rate vs. BRISQUE(Transfer to Inc-v4)

20 40 60 80 100 120 140 160

BRISQUE

0.0

0.2

0.4

0.6

0.8

S
u
c
c
.
R
a
t
e

Succ.Rate vs. BRISQUE (Transfer to Xception)

Figure 4: Succ. Rate vs. BRISQUE. Note that, smaller BRISQUE
corresponds to more natural images.

As shown in Fig. 4, in general, the quality of im-
ages generated by all baseline methods gradually
gets worse as their success rate becomes larger. In
contrast, the BRISQUE of our ABBA always stay
at a small value even if the success rate increases,
demonstrating that ABBA can produce visual natu-
ral adversarial examples with high attack success
rate. When transferring the adversarial examples
to other models, we observe that success rate of
additive-perturbation-based attacks, especially the
FGSM, MIFGSM, TIFGSM, and DIM, decrease
sharply, while the blur-based attacks are not im-
pacted so largely. Comparing with SOTA methods
(i.e., TIDIM and TIMIFGSM) on the transferabil-
ity, we see that adversarial examples of ABBA and
the two methods have similar BRISQUE scores
when their success rate is small. When success rate of TIDIM and TIFGSM further increases, their
BRISQUE values become smaller than ours.
3.4 Adversarial Blur Examples in the Simulation World and Real World
Results in AirSim environment. We validate our ABBAphysical on the AirSim simulator [34] that
supports hardware-in-loop with cameras physically and visually realistic simulations.

AirSim also provides APIs to retrieve relevant data (e.g., real-time depth map) and control cameras in
a platform independent way, which meets the requirements of ABBAphysical introduced in Sec. 2.4.
In particular, we choose the open-source Neighborhood environment [35], containing 70 cars with
various styles. For each car, we select a observation view where a DNN (e.g., Inc-v3) could classify
it correctly. Then, we conduct the ABBAphysical experiment for each car with the following steps:
1) Set a camera to capture a original image of the car at the selected observation view. 2) Use our
method introduced in Sec. 2.4 to calculate an adversarial blurred image (i.e., ABBA’s result) and the
camera translation with the depth map and camera intrinsic parameters. 3) Move the camera along a
straight line to the translation destination while taking N pictures and averaging them to the final

5
For FGSM, MIFGSM, DIM, TIFGSM, TIMIFGSM, and DIM, we tune their success rate by changing their maximum perturbation, i.e., εa in Eq. (1). We tune the
blur-based attacks by tuning the kernel size from 3 to 21. For ABBA, we change the ε and εθ from 5 to 50 and 0.1 to 1, respectively.

7

AirSim Env.

Original
Image

ABBA
Results

ABBA phy.

Results

Attack results in AirSim in real world

Figure 5: Attack results in the Air-
Sim environment (medium) and real
world (right). The left sub-figure
shows a snapshot of the neighbor-
hood environment. The results of
ABBAphysical are produced by physi-
cally moving the camera and mobile
phone in the AirSim and real world,
respectively. All the adversarial ex-
amples fool the Inc-v3 model.

blurred image (i.e., ABBAphysical’s result), which is equivalent to the motion blur generation process
[22]. 4) Test whether the real blurred image and adversarial blurred image could fool DNNs (i.e.,
Inc-v3, Inc-v4, IncRes-v2, and Xception in Table 2) successfully. We summarize the attack success
rates in Table 2 and observe that: 1) ABBAphysical generating adversarial blur examples by physically
moving cameras can achieve high success rate on Inc-v3, which demonstrates that there might exist
real-world motion blur can fool DNNs easily. 2) Although our ABBA has very high transferability
across DNNs, the physical adversarial examples cannot fool other DNNs easily.

Results in the real world environment. We further perform a preliminary experiment
to validate our ABBAphysical in the real world through a mobile phone: 1) we cap-
ture a sharp image with a mobile phone, i.e., the cup in the first row of Fig. 5.

Table 2: Success rate of ABBA and ABBAphysical for at-
tacking DNNs in the AirSim environment.

Adversarial examples from Inc-v3
Inc-v3 Inc-v4 IncRes-v2 Xception

Succ. Rate of ABBA 97.6 87.8 82.9 90.2
Succ. Rate of ABBAphysical 85.3 9.7 14.6 11.0

2) we use ABBA to generate an adversarial blur image
with the Inc-v3 model, i.e., the second row of Fig. 5, and
obtain the image translation parameters that indicate the
mobile phone’s moving direction and distance. 3) we
move the mobile phone along the direction indicated by
the translation parameters and shoot a real-blurred image
in the same scene with longer exposure time. We find both blurred images are misclassified by the
Inc-v3 model. Here, we ignore the cup’s depth since we shoot the sharp and real-blurred images
at almost the same position and empirically tune the moving distance of the mobile phone. Such
operation could be replaced by high-precision robot arms in the future.

3.5 Effect of Deblurring Methods

Here, we discuss the effect of SOTA deblurring methods to our adversarial examples and ‘normal’
motion blurred images. The ‘normal’ motion blur is usually synthesized by averaging neighbouring
video frames [22], which is equivalent to set the kernel weights as 1

N to average the translated
examples in Eq. (4). We can regard such normal motion blur as an attack and add them to all
images in the testing data. We use DeblurGAN [15] and DeblurGANv2 [16] to handle our adver-
sarial examples and the normal motion blurred images and calculate the relative decrease of the
success rate, i.e., r = s−s′

s where s and s′ represent the success rate before and after deblurring.

Figure 6: The relative decrease of attack success rate before and
after deblurring. Two state-of-the-art deblurring methods, i.e., De-
blurGAN [15] and DeblurGANv2 [16], are used to deblur the our
adversarial blurred examples and normal motion blurred images.

Smaller r means the attack is more resilient
against deblurring methods. As shown in Fig. 6, in
general, compared with the normal motion blurred
images, our adversarial examples are harder to be
handled by the state-of-the-art deblurring meth-
ods. For DeblurGANv2, the relative decrease r
of normal motion blur is usually larger than 0.5
when kernel size is in [15, 35]. This means Deblur-
GANv2 can effectively remove the normal motion
blur and improve the classification accuracy. In
contrast, the r of our method is always smaller than the r of normal motion blur, and gradually de-
creases in the range of [15, 35], indicating that it is more difficult to use DeblurGANv2 to defend our
attack as kernel size becomes larger. Similar results are obtained on DeblurGAN where the difference
of r between our method and normal motion blur is much smaller than that on DeblurGANv2.

8

3.6 Hyper-parameter Analysis and Ablation Study
Effect of ε and εθ: We calculate the success rate of our method with different ε and εθ in Eq. (5)
and find that the success rates become gradually higher with the increase of ε and εθ. More results
and discussions can be found in the supplementary material. Effect of motion directions: we fix εθ
and ε and tune the motion direction of object and background by setting different x-axis and y-axis
translations to see the success rate variation. We find that the success rate reaches the highest value
around 45◦ moving direction. We visualize and discuss the results in the supplementary material.
Effect of blurred regions and importance of adaptive translations. We conduct an ablation study
by adding motion blur to different regions of an image. The success rate results are reported in Tab. 1.
Compared with ABBApixel, ABBA makes good balance between the attack success rate and visual
effects. Compared with other variants, ABBA that jointly tunes the object and background translations
can obtain much better transferability across normal trained and defense-based models. We show and
discuss their visualization results in the supplementary material.

4 Conclusions
In this paper, we initiated the first step to comprehensively investigate the potential hazards of
motion blur for DNNs. We propose the kernel-prediction-based attack that can fool DNNs with a
high success rate, which is further regularized by visual saliency to make the motion-blurred image
visually more natural. Besides, we also validate that our adversarial blur might indeed exist in the
real world. Comprehensive evaluation demonstrates the usefulness of our methods. Our results call
for the attention of future research that takes motion blur effects into consideration during real-time
image perception DNN designs. We also hope our work facilities more general solutions of robust
DNN towards addressing common camera motion blur effects. Moreover, we have demonstrated that
the proposed kernel-prediction-based adversarial attack can be extended to other kinds of attacking
methods, e.g., adversarial attacks based on denoising [36], raining [37], camera exposure [38], and
bias field in the medical imaging [39]. We will also discuss the effects of motion blur to visual object
tracking [40, 41, 42], through the proposed ABBA and recent attacking method [43] against tracking.

Acknowledgments and Disclosure of Funding
We appreciate the anonymous reviewers for their valuable feedback. This research was supported
by Singapore National Cy-bersecurity R&D Program No. NRF2018NCR-NCR005-0001, Na-
tional Satellite of Excellence in Trustworthy Software System No.NRF2018NCR-NSOE003-0001,
NRF Investigatorship No. NRFI06-2020-0022. It was also supported by JSPS KAKENHI Grant
No.20H04168, 19K24348, 19H04086, and JST-Mirai Program Grant No.JPMJMI18BB, Japan, and
th National Natural Science Foundation of China(NSFC) under Grant 61671325, Grant 61572354,
Grant 61672376, and Grant U1803264. We gratefully acknowledge the support of NVIDIA AI Tech
Center (NVAITC) to our research.

5 Broader Impact
In this work, we make an early attempt to investigate the motion-blur effects to DNNs, which is a
common phenomenon in the real-world image capturing process of a camera. We present the very first
attack based on manipulating the motion blur of the images. Through comprehensive experiments,
we have demonstrated that very successful attacks can be well disguised in naturally-looking motion
blur patterns of the image, unveiling the system vulnerabilities of any image capture stage that deals
with camera or object motions.

Considering that image capturing and sensing is an integral and essential part of almost every
computer vision application that interacts with the real world, the message we are trying to convey
here is an important one, i.e., attackers can intentionally make use of motion blur, either by tampering
with the camera sensing hardware or the image processing software to embed such an attack. Even
unintentionally, the motion blur effects still commonly exist in the real-world application, posting
threats to the DNNs behind the camera. This work is the first attempt to identify and showcase
that such as attack based off image motion blur is not only feasible, but also leads to high attack
success rate while simultaneously maintaining high realisticity in the image motion blur patterns.
In a larger sense, this work can and will provide new thinking into how to better design the image
capturing pipeline in order to mitigate potential risk caused by the vulnerabilities discussed herein,
especially for mission- and safety-critical applications that are involved with moving objects or

9

moving sensors such as autonomous driving scenarios, mobile face authentication with a hand-held
device, computer-aided diagnostics in medical imaging, robotics, etc.

Bad actors can potentially make use of this newly proposed attack mode as a wheel to pose risks on
existing imaging systems that are not yet prepared for this new type of attack and effect based on
image motion blur. We, as researchers, believe that our proposed method can accelerate the research
and development of the DNN resilient mechanism against such motion blur effects. Therefore, our
work can serve as an asset and a stepping stone for future-generation trustworthy design of computer
vision DNNs and systems.

In addition to the societal impact discussed above, the proposed method can also influence various
research directions. For example, our proposed ABBA method:

• hints new data augmentation technique for training powerful DNN-based deblurring methods.
• hints new DNN design, detection/defense techniques to be resilience against motion blur effects.
• hints new direction of analyzing the effect of motion blur to video analysis tasks, e.g., real-time

visual object detection, tracking, segmentation, and action recognition.

A Supplementary Material

In the submitted manuscript, we have reported the attack results of Inc-v3 on four normal trained
models and four defense models, and compared with 14 attack instances on the transferability and
the image quality. In this supplementary material, (1) we present the evaluation details of our method
regarding the transferability on five more defense models, comparing the visualization results with
SOTA attacks, and discussing the attack results of another three DNNs. (2) We also conducted an
in-depth hyper-parameter analysis and ablation study of our method, and posted an interpretable
explanation about the difference between our method and baselines on the transferability. (3) Finally,
we validated the generalization of our method by attacking an STN-based CNN.

Overall, the results of this supplementary material further demonstrated that the proposed adversarial
blur attack can fool DNNs effectively while generating visually natural blurred images. All exper-
imental results and discussions infer that motion blur as a common effect in the real world has a
high risk of fooling SOTA DNNs and our attack methods initiate the first step to study the potential
hazards of motion blur for DNNs.

A.1 Attack Results on Eight Defense Models

Besides the results on the four defense models reported in the submission, we also compared our
method with baselines on another five defense models including R&P [44], NeurIPS-r36, and three
models from the stae-of-the-art feature denoise-based (FD) defense method [45] (i.e., ResNetXt101
with all denoising (FDR101), ResNet152 with four denoising blocks (FDR152), and adversarial trained
baseline model ResNet152 (FDR152B)). The R&P method transforms input images through random
resizing and padding, which ranked the second in the NeurIPS 2017 defense competition. NeurIPS-r3
is the third rank submission of NeurIPS 2017 defense competition and combines adversarial trained
VGG16, Inc-v3, IncRes-v2, and ResNet152v2 models in an ensemble way. Besides, NeurIPS-r3
also performs transformations, i.e., shear, shifting, zoom, rotation, JPEG compression, and noise
corruption, on input images. The FD method ranked the first in Competition on Adversarial Attacks
and Defenses (CAAD)-2018.

In the Table 1 of our submission, we report the defense results of baselines, i.e., FGSM, MIFGSM,
DIM, TIFGSM, TIMIIFGSM, and TIDIM that use L2 norm bound and show low transferability. Here,
we report the results of above baselines with L∞ norm bound and show the comparison results in
Table I. Note that, all other results of above baselines in our submission and supplementary material
are based on L∞ norm bound.

As reported in Table I, our method, i.e., ABBApixel, achieves the highest transferability across all
defense models and ABBA has competitive results with the state-of-the-art baseline TIDIM. Such
results reveal a potential big shortcoming of existing studies of defense methods, i.e., only considering
the adversarial noise while ignoring other potential factors in physical environment. Note that,
6https://github.com/anlthms/nips-2017

10

https://github.com/anlthms/nips-2017

Original ABBApixel ABBA DIM TIDIM

Figure I: Three visualization results of ABBApixel, ABBA, DIM, and TIDIM. All adversarial examples mislead the Inc-v3 model.

compared with adversarial noise, motion blur frequently happens in our daily life and widely exists
among various computer vision-based applications, thus its influence to DNNs should be carefully
studied and addressed.

Table I: Adversarial comparison results on NeurIPS’17 adversarial competition dataset according to the success rate. We use nine defense
models to evaluate all attacks. The adversarial examples are generated from Inc-v3. There are two comparison groups. For the first one, we
compare blur-based methods, i.e., Interpretation-based blur (Interpblur), GaussBlur, and DefocusBlur with our ABBA by considering the effects
of attacking different regions, i.e., object or background regions, of inputs. In addition to above methods, the second group comparison con-
tains additive-perturbation-based attacks, i.e., Interpretation-based noise (Interpnoise) [17], FGSM [1], MIFGSM [3], DIM [31], and TIFGSM,
TIMIFGSM, and TIDIM [5]. We highlight the top three results with pink , yellow , and blue , respectively.

Defence Results (Adv. Examples from Inc-v3)
Inc-v3env3 Inc-v3env4 IncRes-v2ens HGD R&P NeurPIS-r3 FDR101 FDR152 FDR152B

GaussBlur 23.6 23.8 19.3 16.9 17.2 17.6 35.6 35.8 35.9
GaussBlurobj 8.6 7.8 6.3 4.6 4.8 5.1 13.9 13.9 14.6
GaussBlurbg 13.0 13.1 10.9 8.7 10.0 9.3 19.5 19.2 20.1
DefocBlur 17.5 18.3 15.0 12.9 14.6 14.2 31.1 30.9 31.1
DefocBlurobj 5.2 4.6 3.8 2.7 3.3 2.9 10.8 10.5 11.1
DefocBlurbg 10.1 10.3 9.2 7.8 9.0 8.1 19.5 17.6 18.5
Interpblur 7.1 7.1 4.3 1.4 2.9 2.9 25.5 25.8 28.6

ABBAobj 10.1 10.5 8.3 4.9 6.2 7.1 18.7 18.4 19.1
ABBAbg 1.2 0.8 1.2 0.5 0.6 0.7 43.5 44.1 45.5
ABBAimage 43.2 43.8 38.9 28.4 34.1 35.0 61.1 61.9 62.4
ABBApixel 69.8 72.5 68.0 63.1 65.0 65.7 79.6 81.0 82.1
ABBA 46.6 48.7 41.2 31.0 36.7 38.5 64.2 64.6 65.6

Interpnoise 16.8 16.1 9.4 3.3 4.1 4.4 39.6 41.4 46.8
FGSM 15.6 14.7 7.0 2.1 6.5 9.8 39.2 41.4 45.3
MIFGSM 20.5 17.4 9.5 6.9 8.7 12.9 39.0 40.2 44.6
DIM 24.2 24.3 13.0 9.7 13.3 18.0 39.1 40.3 45.1
TIFGSM 28.2 28.9 22.3 18.4 19.8 24.5 39.7 41.8 45.4
TIMIFGSM 35.8 35.1 25.8 25.7 23.9 26.7 39.3 41.2 45.8
TIDIM 46.9 47.1 37.4 38.3 36.8 41.4 40.0 42.2 45.8

A.2 Visualization Comparison with Baselines

We show several adversarial examples of ABBApixel, ABBA, DIM, and TIDIM in Fig. I, Fig. VIII and
Fig. IX. All examples can mislead the Inc-v3 model.

Obviously, our method ABBA can generate visually natural motion-blurred examples on various
objects and these examples are very similar to real images captured by real-world cameras where the
motion blur is caused by object or camera moving. In contrast, the adversarial examples of DIM and
TIDIM have obvious unreal patterns. The noise-like pattern of DIM is drastically different from the
natural noise usually caused by the camera sensor, e.g., Gaussian noise. The perturbation pattern of
TIDIM is more perceptible than that of DIM, although TIDIM achieves much higher transferbility
than DIM. Compared with ABBA, our another method, i.e., ABBApixel, breaks local pattern of the
original input. However, ABBApixel’s examples look more imperceptible than TIDIM’s results. More
comparison results are shown in Fig. VIII and Fig. IX.

11

Original Sharp Images Adversarial-Blurred Images Blurred Images

Figure II: Comparison between adversarial-blurred images and blurred images for training deblurring models.

Table II: Adversarial comparison results on NeurIPS’17 adversarial competition dataset. There is no available Xception model based on the
author’s implementations [5] of baselines, i.e., FGSM, MIFGSM, DIM, TIFGSM, TIFMIFGSM, and TIDIM. Hence, we leave these baselines’
results empty for the Xception model. We highlight the top three results with pink , yellow , and blue , respectively.

Attacking Results (Inc-v3) Attacking Results (Inc-v4) Attacking Results (IncRes-v2) Attacking Results (Xception)
Inc-v3 Inc-v4 IncRes-v2 Xception Inc-v3 Inc-v4 IncRes-v2 Xception Inc-v3 Inc-v4 IncRes-v2 Xception Inc-v3 Inc-v4 IncRes-v2 Xception

GaussBlur 34.7 22.7 18.4 26.1 14.2 26.7 10.9 17.2 12.1 11.8 20.1 13.8 16.1 15.7 11.9 32.5
GaussBlurobj 13.6 6.0 5.2 7.1 3.5 9.5 2.2 3.9 3.2 2.8 6.4 2.7 3.7 3.4 2.6 10.9
GaussBlurbg 18.8 10.8 9.2 12.0 6.7 13.4 5.5 7.3 6.7 6.5 11.8 6.8 7.6 7.1 6.3 16.3
DefocBlur 30.0 16.8 11.1 18.8 18.7 36.2 13.2 22.3 15.8 14.7 23.4 17.4 18.5 18.7 12.9 36.8
DefocBlurobj 10.0 3.0 2.9 3.6 3.9 10.3 3.1 4.4 3.8 3.2 7.5 3.2 4.4 4.4 2.6 11.8
DefocBlurbg 16.9 9.2 7.0 10.5 10.4 20.1 8.3 12.8 8.9 9.4 15.3 10.1 10.2 11.4 8.4 21.6
Interpblur 34.7 3.6 0.5 3.4 2.7 26.7 0.8 3.1 3.1 3.1 20.1 3.4 3.0 3.1 0.8 32.5

ABBAobj 21.0 4.9 4.2 7.0 11.6 28.9 9.7 11.5 11.2 11.9 29.0 12.7 9.1 9.6 7.7 30.2
ABBAbg 30.9 11.6 10.1 12.9 14.0 31.7 13.3 15.7 14.0 14.0 25.8 13.2 12.5 14.3 11.4 33.3
ABBAimage 62.4 29.8 28.8 34.1 32.0 66.7 28.8 36.2 33.0 30.7 63.4 37.0 28.9 28.4 26.1 66.7
ABBApixel 89.2 65.5 65.8 71.2 77.7 88.1 71.3 76.0 81.8 78.3 92.0 80.6 74.0 67.5 66.8 86.2
ABBA 65.6 31.2 29.7 33.5 39.5 74.9 37.3 43.2 38.4 38.6 71.6 44.2 32.3 35.2 35.9 73.1

Interpnoise 95.8 20.5 15.6 22.9 5.2 92.6 1.6 6.0 6.7 6.0 91.8 8.3 3.5 2.3 0.4 93.4
FGSM 79.6 35.9 30.6 42.1 43.1 72.6 32.5 45.2 44.3 36.1 64.3 45.4
MIFGSM 97.8 47.1 46.4 47.7 67.1 98.8 54.3 58.5 74.8 64.8 100.0 61.7
DIM 98.3 73.8 67.8 71.6 81.8 98.2 74.2 79.1 86.1 83.5 99.1 80.8
TIFGSM 75.4 37.3 32.1 38.6 45.3 68.1 33.7 39.4 49.7 41.5 63.7 44.0
TIMIFGSM 97.9 52.4 47.9 44.6 68.6 98.8 55.3 50.8 76.1 69.5 100.0 59.9
TIDIM 98.5 75.2 69.2 61.3 80.7 98.7 73.2 65.5 86.4 85.5 98.8 71.0

Besides above visualization results, we further conduct an experiment to compare our adversarial
blur images with the blur images for training deblurring models [15]. Specifically, given a sharp
image, e.g., the left sub-figures in Fig. II, we use ABBA to generate corresponding adversarial blur
images and compare them with the blur images for training. Obviously, both blur looks realistic,
which demonstrates the capability of ABBA to generate visually natural blur images.

A.3 Attack Results of Inc-v3, Inc-v4, IncRes-v2, and Xception

Besides the attack results of Inc-v3 reported in our submission, we further show the results of Inc-v4,
IncRes-v2, and Xception in Table II. Note that, there is no available Xception model based on the
authors’ implementations [5] of FGSM, MIFGSM, DIM, TIFGSM, TIFMIFGSM, and TIDIM. Hence,
we leave these baselines’ results empty for the Xception model. Similar to the results of Inc-v3, for
the transferability results, our method, i.e., ABBApixel, achieves slightly lower success rate than the
state-of-the-art additive-perturbation-based attacks, i.e., DIM and TIDIM, when attacking Inc-v3,
Inc-v4, and IncRes-v2, and obtains higher success rate than TIDIM when attacking the Xception
model. For the whitebox attacks, TIMIFGSM and MIFGSM usually achieve the highest success rate.

A.4 Hyper-parameter Analysis and Ablation Study

Effect of ε and εθ. We calculate the success rate of our method with different ε and εθ in the Eq. (5)
of our submission, respectively. Specifically, we try ε with the range [5, N] where N = 51 and εθ in
[0, 1]. As shown in Fig. III (a), the success rates become gradually higher with the increase of ε and
εθ. The highest success rates are 94.8%, 68.5% 68.4%, and 72.1% on Inc-v3, Inc-v4, IncRes-v2, and

12

Figure III: Up: shows the success rate of ABBA w.r.t. the variation of both ε and εθ in Eq. (5) of our submission where ε is within [5, 50] with
step size 5 and εθ is in [0, 1] with step size 0.1. Down: shows an example of .

Figure IV: Up: two examples of ABBApixel, ABBAobj, ABBAbg, ABBAimage, and ABBA. Bottom: Success rates of our method with respect to the
object motion directions.

Xception, respectively. We also visualize adversarial examples of an image that has been successfully
attacked on all ε > 0 and εθ > 0. Obviously, as ε and εθ increase, the visual effects of adversarial
examples gradually become worse and the perturbations are more easily perceived. According to
numerous attacking on different images, we choose the ε = 15.0 and εθ = 0.4 to balance the success
rate and visual effects when comparing with baselines on transferability in Sec. 3.2 in our submission.

Effect of motion directions. we fix εθ = 0.4 and ε = 15.0 and tune the motion direction of
object and background by setting different x-axis and y-axis translations. For each object motion
direction, we calculate the mean and standard variation of the success rates on different background
moving directions. As shown in Fig. IV (B), the success rate increases as the object motion direction
becomes larger in [10◦, 50◦] while decreasing as the direction is smaller in [50◦, 70◦]. The success
rate variation has symmetrical trend in the range of [90◦, 170◦]. Such results are mostly caused by the
L∞ used for constraining the translation. The motion direction is directly related to the translation
and the success rate reaches the highest value around 45◦.

Effect of blurred regions and importance of adaptive translations. As reported in Tab. 1 in our
submission and cases shown in Fig. IV (U), ABBApixel achieves the highest attack success rate and
transferability among all variants, which, however, changes the original image obviously and looks
unnatural. ABBAobj and ABBAbg have the worst success rate on all models although they tend to
generate visually natural motion blur. ABBAimage and ABBA make good balance between the attack
success rate and visual effects. In particular, ABBA that jointly tunes the object and background
translations can obtain much better transferability across normal trained and defense-based models.
Note that, when compared with the results using fixed motion directions in Fig. IV (B), ABBA obtains
the highest success rate among all motion direction, further demonstrating usefulness of adaptive
translations.

13

Figure V: Left: the interpretable maps of six adversarial examples generated by FGSM, MIFGSM, and ABBA, respectively, with four models.
Right: the transferability & consistency distributions of adversarial examples generated by the three attacks.

A.5 Interpretable Explanation of the Transferability

In the following, we explore the difference between ABBA, FGSM, and MIFGSM on the transferability.
Note that, we implement FGSM and MIFGSM on the same platform (i.e., pytorch with foolbox 2.3.0)
with ABBA for fair comparison. We modify the method in [17] that generates an interpretable map
for a classification model f(·) with a given perturbation. Then, we observe that the transferability of
an adversarial example generated by an attack correlates with the consistency of interpretable maps
of different models. Specifically, given an adversarial example Xadv generated by an attack and the
original image Xreal, we can calculate an interpretable map Mf for f(·) by optimizing:

arg min
Mf

fy(Mf �Xadv + (1−Mf)�Xreal) + λ1‖Mf‖1 + λ2TV(Mf) (6)

where fy(·) denotes the score at label y that is the ground truth label of Xreal and TV(·)
is the total-variation norm. Intuitively, optimizing Eq. (6) is to find the region that causes
misclassification. We optimize Eq. (6) via gradient decent in 150 iterations and fix λ1 =
0.05 and λ2 = 0.2. We can calculate four interpretable maps for each adversarial example
based on four models, i.e., Inc-v3, Inc-v4, IncRes-v2, and Xception, as shown in Fig. V(L).

0.5
0.6

0.7
0.8

0.9
1.0

1.1
10.0

12.5
15.0

17.5
20.0

22.5
25.0

27.5
30.0

S
u
c
c
.

R
a
t
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure VI: Success rate of ABBA w.r.t. different εθ and ε that are
maximum translations and maximum number of valid kernel ele-
ments.

We observe that the interpretable maps of our
method have similar distributions across the four
models while the maps of FGSM and MIFGSM do
not exhibit this phenomenon. To further validate
this observation, we calculate the standard varia-
tion across the four maps at each pixel and get a
value by mean pooling. We normalize the value
and regard it as the consistency measure for the
four maps. As shown in Fig. V(R), the consistency
of adversarial examples of our method is gener-
ally higher than that of FGSM and MIFGSM. We
further study the transferability of an adversarial
example across models. Given an adversarial ex-
ample from Inc-v3 and a model f(·), we calculate
a score to measure the transferability under this model: tf = fc(X

adv) − fy(Xadv) where c 6= y is
the label having maximum score among non-ground-truth labels. If tf > 0 means the adversarial
example fool f(·) successfully, and vice versa. As shown in Fig. V(R), the transferability of adversarial
examples of our method is generally higher than that of FGSM and MIFGSM.

A.6 Attack results of STN-based model

As introduced in Sec. 2.3 in the submission, we employ the spatial transformer network (STN) to
tune the translation parameters of the object and background, and it may post a question if our
method could also be useful in attacking STN-based CNN models. Towards more comprehensive

14

Original

ABBA

Original

ABBA

Figure VII: Visualization examples of ABBA for attacking STN-based CNN with two group hyper-parameters, i.e., εθ = 0.5, ε = 15.0 and
εθ = 1.0, ε = 15.0.

evaluation and answering this question, we further conduct an experiment to attack the STN-based
CNN implemented by [46] on the MNIST dataset. First, we use our ABBA to attack the STN-based
CNN with different hyper-parameters, i.e., the maximum translations (εθ) and the maximum number
of valid kernel elements (εθ). As shown in Fig. VI, the success rate of our method gradually increases
as the εθ and ε become larger, which demonstrates the effectiveness of our method. Second, we
show several examples of our attack results in Fig. VII with two groups of hyper-parameters, i.e.,
εθ = 0.5, ε = 15.0 and εθ = 1.0, ε = 15.0. As shown in Fig. VII, with the small εθ = 0.5, our
method can generate slightly blurred handwritten digits that look naturally but fool the STN-based
CNN. When using larger εθ = 1.0, the adversarial images become more blurred but still natural.

References
[1] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.

arXiv preprint arXiv:1412.6572, 2014.

[2] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv:1607.02533, 2017.

[3] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting adversarial attacks with momentum.
In CVPR, pages 9185–9193, 2018.

[4] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 39–57, 2017.

[5] Y. Dong, T. Pang, H. Su, and J. Zhu. Evading defenses to transferable adversarial examples by translation-
invariant attacks. In CVPR, pages 4307–4316, 2019.

[6] Shaokai Ye, Sia Huat Tan, Kaidi Xu, Chenglong Bao Yanzhi Wang, and Kaisheng Ma. Brain-inspired
reverse adversarial examples. In arXiv:1905.12171, 2019.

[7] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially transformed
adversarial examples. In ICLR, 2018.

[8] Rima Alaifari, Giovanni S. Alberti, and Tandri Gauksson. ADef: an iterative algorithm to construct
adversarial deformations. In ICLR, 2019.

[9] Run Wang, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, Yihao Huang, and Yang Liu. Amora: Black-box
adversarial morphing attack. arXiv preprint arXiv:1912.03829, 2019.

[10] Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, and David Forsyth. Unrestricted adversarial
examples via semantic manipulation. In ICLR, 2020.

[11] B. Mildenhall, J. T. Barron, J. Chen, D. Sharlet, R. Ng, and R. Carroll. Burst denoising with kernel
prediction networks. In CVPR, pages 2502–2510, 2018.

[12] S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via adaptive convolution. In CVPR, pages
2270–2279, 2017.

[13] S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via adaptive separable convolution. In ICCV,
pages 261–270, 2017.

15

Original ABBApixel ABBA DIM TIDIM

Figure VIII: Seven visualization results of ABBApixel, ABBA, DIM, and TIDIM. All adversarial examples fool the Inc-v3 model.

[14] T. Brooks and J. T. Barron. Learning to synthesize motion blur. In CVPR, pages 6833–6841, 2019.

[15] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas. Deblurgan: Blind motion deblurring
using conditional adversarial networks. In CVPR, 2018.

[16] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. Deblurgan-v2: Deblurring (orders-of-
magnitude) faster and better. In ICCV, 2019.

[17] R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful perturbation. In ICCV,
pages 3449–3457, 2017.

[18] K. He, J. Sun, and X. Tang. Guided image filtering. TPAMI, 35(6):1397–1409, 2013.

[19] Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill, Pradeep Sen, Tony
DeRose, and Fabrice Rousselle. Kernel-predicting convolutional networks for denoising monte carlo
renderings. ACM Trans. Graph., 36(4):97:1–97:14, 2017.

[20] Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Jiashi Feng, and Jianmin Jiang. A simple pooling-based
design for real-time salient object detection. In CVPR, 2019.

[21] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray kavukcuoglu. Spatial transformer
networks. In NIPS, 2015.

16

Original ABBApixel ABBA DIM TIDIM

Figure IX: Seven visualization results of ABBApixel, ABBA, DIM, and TIDIM. All adversarial examples fool the Inc-v3 model.

[22] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network for
dynamic scene deblurring. In CVPR, pages 3883–3891, 2017.

[23] M. Noroozi, P. Chandramouli, and P. Favaro. Motion deblurring in the wild. In Pattern Recognition, pages
65–77, 2017.

[24] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and physical
simulation for autonomous vehicles. In Field and Service Robotics, 2017.

[25] Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming Liang, Tianyu Pang,
Jun Zhu, Xiaolin Hu, Cihang Xie, et al. Adversarial attacks and defences competition. CoRR, 2018.

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
computer vision. In CVPR, 2016.

[27] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and the impact of
residual connections on learning. In AAAI, 2017.

[28] François Chollet. Xception: Deep learning with depthwise separable convolutions. In CVPR, 2017.

[29] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick D. McDaniel. Ensemble
adversarial training: Attacks and defenses. In ICLR, 2018.

17

[30] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense against
adversarial attacks using high-level representation guided denoiser. In CVPR, 2018.

[31] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L. Yuille.
Improving transferability of adversarial examples with input diversity. In CVPR, 2019.

[32] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark the
robustness of machine learning models, 2017.

[33] A. Mittal, A. K. Moorthy, and A. C. Bovik. No-reference image quality assessment in the spatial domain.
IEEE Transactions on Image Processing, 21(12):4695–4708, 2012.

[34] Microsoft. Airsim simulator. website. https://microsoft.github.io/AirSim/.

[35] Microsoft AirSim. Released airsim environments. website. https://github.com/microsoft/AirSim/releases.

[36] Yupeng Cheng, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Shang-Wei Lin, Weisi Lin, Wei Feng, and Yang Liu.
Pasadena: Perceptually aware and stealthy adversarial denoise attack. arXiv preprint arXiv:2007.07097,
2020.

[37] Liming Zhai, Felix Juefei-Xu, Qing Guo, Xiaofei Xie, Lei Ma, Wei Feng, Shengchao Qin, and Yang Liu.
It’s Raining Cats or Dogs? Adversarial Rain Attack on DNN Perception. arXiv preprint arXiv:2009.09205,
2020.

[38] Yupeng Cheng, Felix Juefei-Xu, Qing Guo, Huazhu Fu, Xiaofei Xie, Shang-Wei Lin, Weisi Lin, and Yang
Liu. Adversarial Exposure Attack on Diabetic Retinopathy Imagery. arXiv preprint arXiv:2009.09231,
2020.

[39] Binyu Tian, Qing Guo, Felix Juefei-Xu, Wen Le Chan, Yupeng Cheng, Xiaohong Li, Xiaofei Xie,
and Shengchao Qin. Bias Field Poses a Threat to DNN-based X-Ray Recognition. arXiv preprint
arXiv:2009.09247, 2020.

[40] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and Song Wang. Learning dynamic siamese
network for visual object tracking. In Proceedings of the IEEE international conference on computer
vision, pages 1763–1771, 2017.

[41] Qing Guo, Wei Feng, Ce Zhou, Chi-Man Pun, and Bin Wu. Structure-regularized compressive tracking
with online data-driven sampling. IEEE Transactions on Image Processing, 26(12):5692–5705, 2017.

[42] Qing Guo, Ruize Han, Wei Feng, Zhihao Chen, and Liang Wan. Selective spatial regularization by
reinforcement learned decision making for object tracking. IEEE Transactions on Image Processing,
29:2999–3013, 2020.

[43] Qing Guo, Xiaofei Xie, Felix Juefei-Xu, Lei Ma, Zhongguo Li, Wanli Xue, Wei Feng, and Yang Liu.
Spark: Spatial-aware online incremental attack against visual tracking. In Proceedings of the European
Conference on Computer Vision (ECCV), 2020.

[44] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial effects
through randomization. In Proceedings of the International Conference on Learning Representations,
2018.

[45] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L. Yuille, and Kaiming He. Feature denoising for
improving adversarial robustness. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[46] Chen-Hsuan Lin. Spatial transformer networks. website. https://github.com/chenhsuanlin/
inverse-compositional-STN.

18

https://microsoft.github.io/AirSim/
https://github.com/microsoft/AirSim/releases
https://github.com/chenhsuanlin/inverse-compositional-STN
https://github.com/chenhsuanlin/inverse-compositional-STN

	1 Introduction
	2 Methodology
	2.1 Background: Additive-Perturbation-Based Attack
	2.2 ABBApixel: Kernel-Prediction-Based Adversarial Attack
	2.3 ABBA: Motion-Based Adversarial Blur Attack
	2.3.1 Saliency-Regularized Adversarial Kernel Prediction
	2.3.2 Attacking Algorithm

	2.4 ABBAphysical: Towards Real-World Adversarial Blur Attack

	3 Experimental Results
	3.1 Experimental Settings
	3.2 Comparison with Baselines on Transferability
	3.3 Comparison with Baselines on Image Quality
	3.4 Adversarial Blur Examples in the Simulation World and Real World
	3.5 Effect of Deblurring Methods
	3.6 Hyper-parameter Analysis and Ablation Study

	4 Conclusions
	5 Broader Impact
	A Supplementary Material
	A.1 Attack Results on Eight Defense Models
	A.2 Visualization Comparison with Baselines
	A.3 Attack Results of Inc-v3, Inc-v4, IncRes-v2, and Xception
	A.4 Hyper-parameter Analysis and Ablation Study
	A.5 Interpretable Explanation of the Transferability
	A.6 Attack results of STN-based model

